relife.regression.RegressionFittingResult

relife.regression.RegressionFittingResult

class relife.regression.RegressionFittingResult(opt: scipy.optimize._optimize.OptimizeResult, jac: numpy.ndarray, var: numpy.ndarray, n_samples: int, cindex: float)[source]

Bases: relife.parametric.FittingResult

Class for the result of the fitted regression, inheriting from FittingResult.

Used as the type for the instance attribute ‘result’ for an object of the Regression class, after fitting.

Methods

asdict

converts FittingResult into a dictionary.

standard_error

Standard error estimation function.

Attributes

cindex

asdict() dict

converts FittingResult into a dictionary.

Returns

Returns the fitting result as a dictionary.

Return type

dict

standard_error(jac_f: numpy.ndarray) numpy.ndarray

Standard error estimation function.

Parameters

jac_f (1D array) – The Jacobian of a function f with respect to params.

Returns

Standard error for f(params).

Return type

1D array

References

1

Meeker, W. Q., Escobar, L. A., & Pascual, F. G. (2022). Statistical methods for reliability data. John Wiley & Sons.

opt: scipy.optimize._optimize.OptimizeResult

Optimization result (see scipy.optimize.OptimizeResult doc).

jac: numpy.ndarray

Jacobian of the negative log-likelihood with the lifetime data.

var: numpy.ndarray

Covariance matrix (computed as the inverse of the Hessian matrix)

se: numpy.ndarray

Standard error, square root of the diagonal of the covariance matrix.

n_samples: int

Number of observations (samples).

n_params: int

Number of parameters.

AIC: float

Akaike Information Criterion.

AICc: float

Akaike Information Criterion with a correction for small sample sizes.

BIC: float

Bayesian Information Criterion.